
Animal Breeder's Tool Kit
User's Guide and Reference Manual

B. L. Golden, W. M. Snelling and C. H. Mallinckrodt1

1 Assistant professor, research associate and graduate assistant, Department of Animal
Sciences.

The authors wish to thank Dr. Richard Bourdon, Associate Professor, Department of
Animal Sciences, Dr. James Brinks, Professor, Department of Animal Sciences, and Dr.
Thomas Field, Assistant Professor, Department of Animal Sciences for their comments
and assistance in the preparation of this bulletin.

These manuals describe release 1 of the abtk software.

Animal Breeder's Tool Kit

User's Guide

User's Guide Table of Contents

1 User Environment, Terminology and Definitions G-1
About This Document . G-2
The User Environment . G-3
Definitions and Terminology . G-5
Adding New Routines . G-5
Obtaining a Copy of abtk . G-6

2 Preparing Data for Analysis . G-7
The Unix User Utilities . G-7
Missing Values . G-8

3 Storage Modes . G-10
General Description of Storage Modes . G-10

4 Basic Commands for Assembling Linear Systems G-13
An Example Model . G-13
Equation for the Mean . G-14
Incidence of the Fixed Effects . G-15
Concatenating the Blocks . G-16
Creating the Normal Equations. G-17

5 Assembling Single Trait Animal Models G-18
Constructing the Inverse Numerator
Relationship Matrix . G-19
Assembling the Normal Equations . G-20
Maternal Effects Model . G-21
Maternal Effects Normal Equations . G-23

6 Assembling Reduced Animal Models G-25
Forming the Normal Equations . G-27

7 Assembling Multiple Trait Models G-28
Multiple Trait Normal Equations . G-28
Inverse Residual Matrix Blocks . G-29
RAM Multiple Trait Models . G-29

8 Solving The Linear System . G-31
Direct Solution Using an Inverse . G-31
Iterative Solution . G-31

G-1

1 User Environment, Terminology
and Definitions

The Animal Breeder's Tool Kit (abtk) is a software package that assists the
technically trained animal breeder in assembling and solving equation systems without
needing to know a third generation programming language such as FORTRAN or C.
The abtk was originally developed around the linear systems common in animal breeding
problems. However, it was intended to be flexible enough that it should accommodate
a wide variety of equation systems, linear or otherwise. Obviously, the field of
mathematics is such that not all routines to construct and solve every possible equation
system are incorporated in this package. But the current release of abtk includes a
substantial number of tools that will assist most all users working in the field of livestock
genetics and form a foundation that can be built upon. It is hoped and intended that if
routines a particular user finds helpful to fulfill his particular research needs are missing,
he will develop them and share them with the rest of the animal breeding community by
making them available on the anonymous ftp site at Colorado State University. The
procedure for doing this is discussed later in this chapter.

We are certain that to try and accomplish for mixed models what, say, SAS
(1990) PROC GLM has done for fixed models would be impossible. It may be possible
to prepare some subset of useful models, but even specifying the structure and solution
characteristics of the most basic mixed models is much more complex then fixed effects
analysis. Thus, we have chosen the "toolkit" approach.

To some more experienced users part of the abtk will look and behave like the
older symbolic matrix interpreters such as SMIS or SAS's PROC MATRIX. Because
we are targeting this package at trained animal breeders it was important to be able to
take the information from literature and easily transfer it to application. Therefore,
many parts of the system look like symbolic matrix interpretation. However, as
explained in detail in the Technical Reference, the underlying algorithms and data
storage modes are very dissimilar from traditional matrix packages. Traditional
approaches to software for matrix interpretation have been limited in size of equation
systems due to algorithm performance and data storage modes. For the most part the
algorithms used in the abtk avoid these limitations.

The abtk was designed to take advantage of what appear to be the most promising
trends in performance computing. The advent of small (in physical size), high
performance architectures with large memory and high speed I/O devices has directed
the development of the methods used in the abtk. Because of the success in the
development of technology such as RISC computing, the algorithms are based on high
speed scaler processing with I/O that uses large band widths. The methods used in the
abtk were not explicitly coded for a particular hardware configuration and have been
used in environments ranging from UNIX running on an Intel 80386 processor at 25 Mh
to a Cray Y/MP 864. All algorithms take advantage of dynamic memory allocation and,
thus problem size is limited only by the available memory and mass storage capacity of
the system.

About This Document

G-2

The documentation for the abtk consists of three manuals. The first manual is a
"Users Guide." This guide is not meant to be a training manual in best linear unbiased
prediction, but it does demonstrate how to build several mixed model linear systems
using the abtk. It is hoped users will find this document a useful reference manual for
not only the software but also common methods and notations used by animal breeders.
Many users should find the appendix particularly helpful.

The discussion of the abtk in the guide is strictly limited to its use in linear
models. Once a substantial number of routines have been developed for handling other
types of linear or non-linear systems a supplementary guide will be developed.
However, even though only fixed and mixed model systems common in animal breeding
are discussed, abtk is not limited to these uses.

The second manual is the "Reference Manual." The reference manual is an
alphabetized list of the commands and their descriptions. Users are strongly encouraged
to keep a copy of the reference manual available when working with the abtk. The
printed paper copy of the Reference Manual and the Users Guide are bound together.

A good UNIX reference is also necessary. The abtk is closely bound to the UNIX
operating system and many of the data manipulations that users make are performed
using the UNIX user utilities (awk, join, sort, etc.). For a discussion of the UNIX user
utilities any good UNIX reference and guide will work. Many other public domain or
freeware utilities exist for UNIX. Users may want to supplement the user utilities with
a package such as Perl, an advanced data manipulation package that combines many of
the features of awk, sed join and other UNIX utilities. Perl can be obtained from the
usenet archives on the Internet. The discussion in this guide will be restricted to utilities
that are available on all UNIX systems.

The third manual, or "Technical Reference", is a discussion of the algorithms and
storage modes used by the abtk. This manual should be very useful for the application
developer who needs examples and ideas for expanding the abtk.

The User Environment

The abtk is closely bound to the UNIX user utilities. Early in the development
of the abtk we realized that any animal breeder doing even the most basic statistical
analysis would benefit from knowing the UNIX user utilities. Moreover, relying on the
UNIX user utilities avoids the development of redundant routines and algorithms.

The abtk is a series of commands that process data into symbolic representations
of matrices and matrix components and solve the equation systems assembled. The
commands are all given from the UNIX prompt (any shell). All commands generally
follow the proposed ANSI specification for parameters and arguments, with one
exception for a few simple commands. This exception involves the order dependence
of arguments. For example, to multiply two matrices together and save them as a third
matrix the syntax would be,

mult A B C

G-3

indicating that matrix A is to be multiplied by matrix B and store in matrix C (where A
premultiplies B). The proposed standard for command arguments specifies arguments
should be order independent, but this did not make sense for certain commands that
involved matrix operations. Most other commands use UNIX parameter flags indicating
what the argument is, and thus the arguments are order independent. For example, to
iteratively solve a linear system, the following command could be used,

itgen -R beta.old -n coef -r rhs -m 1000 -b beta.new

This command would result in the iterative solution (Gauss-Siedel) using the vector
beta.old for starting values, coef as the coefficient matrix, rhs as the right hand side
vector, 1000 as the maximum number of rounds to iterate and place the solutions into
beta.new. The arguments could be given in any order (just like a UNIX command).

In addition to using a UNIX like command syntax, the commands behave in a
UNIX like fashion. If a command is issued without arguments it returns a syntax
message. This is particularly useful if the exact syntax of the arguments is forgotten.
For example, if you have forgotten the syntax of the generalized incidence matrix
construction routine, entering,

gen_z

will result in the following syntax explaination,

gen_z: Syntax: gen_z -d data_vector -e effect_list -r rhs_vector -o output_matrix

The abtk relies on the UNIX system to supply components that are critical to its
operation. Several of the UNIX user utilities provide important data handling
capabilities that must be performed in the setup of a problem for solution. The most
used commands are the awk pattern scanning and recognition language, the join
relational data operator, the sort data sorter, and occasionally the paste horizontal flat
file concatinator.

The most often used user utility is awk. Awk is a very easy to use language that
gives you powerful data manipulation capability without needing to know a third
generation programming language. For a complete and easily understood discussion of
the awk language see "AWK Programming Language" (Aho, 1988) or any basic UNIX
guide.

It is also useful for the advanced user to learn shell programming. The codes that
make up the abtk are a mixture of C language, awk and bourne shell scripts. The abtk
is intended to work like a macro language that is processed by the command interpreter.
Users should not hesitate to program analyses they will use multiple times into a script
program that they can batch process. The developers have had success taking this
approach when performing even REML type analyses. Example scripts are included
with the release version in the examples subdirectory.

Definitions and Terminology

G-4

The discussion in this manual is a blend of terms commonly used among UNIX
users and among animal breeders. Since this manual cannot instruct in every aspect of
computing or animal breeding, a certain level of understanding will be assumed. This
documentation and the level of sophistication of the abtk is intended for people who have
received or are currently enrolled in at least one graduate level course in mixed models
methodology.

A complete discussion of how the abtk forms and stores its matrices appears in
section 3 of the Users Guide. It is important that the user understand how the UNIX file
system works and particularly how it works with the abtk. The abtk uses an object
oriented approach. Each matrix and data vector must be thought of as an individual
object. It is helpful if the beginning user tries to forget his understanding of data files,
file systems and data analysis developed from working in environments such as SAS,
MS-DOS or LSML76. In the abtk each data vector from a traditional flat text file will
be stored in its own UNIX "file". Each matrix formed from data vectors or other
matrices will also be stored in a UNIX "file".

The user should take a structured approach to solving his particular problem. For
example, the first step when assembling a particular problem is to separate a traditional
flat data file into separate data vectors for each column in the flat file. By storing each
data vector of the flat file in a separate UNIX file, each vector can be worked with as a
unique object. This is analogous to a typical fourth generation data base manager where
each category is given a unique name, and the UNIX subdirectory where the flat file is
stored can be thought of as the data table. Users can easily accomplish these types of
manipulations using the UNIX user utilities. This guide contains many examples of
these tasks.

Adding New Routines

The abtk can be useful for testing and developing new models or new algorithms.
It is intended that as new research is performed, the abtk can provide a starting point, or
at least an environment that will allow the researcher to develop new methods without
having to generate computer code that performs the setup work. For example, if a
researcher were working in solution methods for non-linear systems, abtk could provide
many of the assembly routines for the equation systems. The researcher would then be
free to concentrate on the solution algorithm.

Researchers who would like to use the abtk for this purpose are encouraged to
study the abtk Technical Reference for a discussion of algorithms and storage modes.
Pay particular attention to the way in which storage modes have increased not only
problem size but also performance of the operation. For an example, see the discussion
of how the matrix multiply is performed with the SPARSE storage mode.

Obtaining a Copy of abtk

Users can obtain a magnetic copy free of charge from anonymous FTP at
anonymous@cgel.agsci.colostate.edu. The abtk is distributed in a compressed tar file
so the user will need both an uncompress utility and a good tar (Unix tape archive)

G-5

utility. Both are made available through the Internet at several anonymous FTP sites
offering the GNU software collection.

The distribution file contains magnetic copies of the manuals in post script
format. Users can also obtain copies of the manuals in WordPerfect format from the
anonymous server.

Paper copies of the documentation can be obtained by contacting the Department
of Animal Sciences, Colorado State University, Ft Collins, CO 80523. There will be a
charge for the paper copies of the documentation to cover printing costs.

The abtk will also be distributed for a minimal $20 processing fee on reel-to-reel
tape (6250 or 1600 bpi) in a compressed tar format.

Users with special needs are encouraged to contact the author to make
arrangements.

G-6

2 Preparing Data for
Analysis

Data preparation for an abtk analysis is performed primarily using the UNIX user
utilities. It is not recommended that a user attempt to supplement the data preparation
tasks with a fourth generation relational database manager such as SAS or Oracle. The
experiences of our shop indicate that it is more efficient to manage data using the UNIX
user utilities.

The objective is to prepare a data set to work the way animal breeders are trained
to think and to work the way information about models is presented in the literature.
Therefore, the data must be organized according to the object oriented model. For all
traditional statistical analysis packages the data are managed as a flat file. In some of
the more sophisticated commercial statistical software packages the data are managed
using an object oriented approach, but are managed as binary data held in a single file
that is not generally available to the researcher except through the data management
package. The abtk uses the data stored as text files (ASCII) and any component of the
files are generally available to the user through the UNIX user utilities.

The Unix User Utilities

Typically, data analyzed in animal breeding studies are organized in one or a
series of two dimensional data files. The data structure in these data files is usually
conceptualized as having categories represented as columns and items represented with
different rows. For example, take the following data file,

A 1 5 500
B 2 3 450
C 1 2 475
D 1 5 550
E 2 4 425
F 2 5 490

Say this file represents six beef cattle weaning weight observations . The animal
identification is held in the first field (column). The second field is the sex code, 1=bull
and 2=heifer. The third field represents the age in years of the dam, and the last field
represents the observed weaning weight of each animal in a row (item).

Traditionally, these data would be held in a single file as input to the analytical
software that would perform, say, a fixed model analysis of weaning weight. The abtk
requires that each field be held in a separate UNIX file. To the first time user this
approach may seem a little awkward, but, with some experience users will realize that
this is not different from traditional approaches except that now there is much more
precise control of the contents of these files. They can be conceptualized as the objects
represented by notations commonly seen in animal breeding literature.

File names should correspond to the field contained in the file (id, sex, aod etc.).
The name of the directory containing a series of files should reflect the contents of the
directory. Working from our example data set above, say the file was copied into the

G-7

HOME directory of a UNIX account with the filename of "wean.dat". The next logical
step to prepare these data for analysis would be to separate its categories into separate
files in a subdirectory. The user would need to create the subdirectory,

mkdir data

and then begin "awk'ing" the file into components. To create a file in the data
subdirectory for the id category the user would issue,

awk '{print $1}' wean.dat >data/id

Preparing the other three categories would proceed as follows,

awk '{print $2}' wean.dat >data/sex
awk '{print $3}' wean.dat >data/aod
awk '{print $4}' wean.dat >data/yw

Now the subdirectory called data is logically equivalent to the file called wean.dat but
the user has more flexibility in making manipulations on the objects represented by the
directory. For example, say the user wanted to view a list of just the id and observation
fields. The following command could accomplish this,

paste id yw

An additional advantage of this strategy is flexibility when drawing information from
several two-dimensional data structures or manipulating data with many to one
relationships. For example, many problems in animal breeding involve the
manipulation of pedigree information and performance measures. A category such as
sire identification number may involve a one to many relationship to offspring weaning
weight observations. Managing the data using this strategy can make the necessary
manipulations easier to accomplish.

Missing Values

Missing values in a data field can be designated with a "." character placed in the
appropriate field. If a single field has a missing value it may be necessary (or desirable)
to remove the record or to indicate missing values in the field(s) for dependent variables
for the same item. For example, if animal D in the above data set had an unknown age
of dam, a "." would be placed in the age of dam field instead of the "5". It may be
necessary to also place a "." in the field for weaning observation because forming the
incidence matrix for the other fixed effect of sex occurs independently and would
consider the observation as valid.

This is done to give the user maximum flexibility when constructing a linear
system. There maybe situations when the user is confident the missing values in one
fixed effect are randomly and uniformly distributed across all other levels of other fixed
effects. In this situation the user may not want to designate the dependent value as
missing since it would add information without adding bias or error.

Additionally, for many random effects such as sire or dam, it is common to have
an unknown parent without designating the observation as missing.

G-8

G-9

3 Storage Modes
Since it was intended in the design of this package to maximize performance

while optimizing utility, it was necessary to store and work with data held on mass
storage in multiple storage modes. It is helpful (but probably not necessary) to have a
limited understanding of the most common storage modes to effectively operate the abtk.
The storage modes are the key to the feasibility of solving problems of realistic size.
The storage modes help to increase the capacity of the software to handle large problems
by reducing wasted mass storage space and by allowing the implementation of special
algorithms that take advantage of the features of some storage modes.

Users who want to develop additional tools are encouraged to carefully study the
discussion of storage modes in the technical reference.

General Description of Storage Modes

There are ten storage modes supported in the abtk. Not all ten are implemented
in all routines, and thus for a few "non-typical" operations, translation of storage modes
may be necessary. For example, the routine ident, used to form an identity matrix,
builds the identity matrix using only a storage mode called DIAGONAL.

Many routines accommodate several storage modes. The storage modes chosen
to be used by a given routine were determined by how likely it was that the routine
would receive as input a matrix in a given storage mode and what the effects of a given
storage mode would be on the computer performance of the operation.

Users are encouraged to contact the developers and request changes in how
storage modes are implemented. If a given routine does not support a given storage
mode, and the user sees this as a shortcoming, please contact the developers.

Headers, Text and Compression. All storage modes of data use a header record
except the storage mode called DEFAULT. The DEFAULT storage mode is a
traditional storage method where a matrix or vector is stored as a complete, two-
dimensional representation of the data. For example, when the example data set in
section 1 of the Users Guide was separated into its component fields, each field was
stored in the DEFAULT storage mode. Another example is the following two
dimensional matrix,

10 20
20 30

If the user issued the UNIX cat command to a file that contained this matrix and it
appeared as it does above, then the storage mode was DEFAULT.

All other storage modes have a header record. The header record is the first line
of the file. If a user uses the cat command to view the above matrix, and it was in, for
example, the SPARSE storage mode, it would appear as,

SPARSE 2 2 4
1 1 10

G-10

1 2 20
2 1 20
2 2 30

The first line of this five line file is the header record. The header record always
contains four fields. The first field indicates the storage mode, the next two fields
indicate the row and column dimensions of the matrix being stored respectively, and the
last field indicates the number of records in the file. A record is always terminated by
a newline (0x0A) character.

All storage modes use ascii character data. Even though performance would be
improved and total storage may be reduced by offering storage modes that contain
binary data, it is important that the user be able to easily view the contents of a file and
manipulate it with the UNIX user utilities.

Compressed storage. Most of the tools accept input files (matrices) stored in
compressed modes. The compression is performed using the compress utility installed
on the users system. The user must be sure that his PATH variable is set to point to the
location of the compress utilities and that this variable is globally available (see the
export command if using the Bourne or Korn shells).

If you do not have a compress utility that makes ".Z" files you can either
reconfigure the compile to use the pack utility (see the technical reference) or build the
GNU compress utility on your system. Installing the GNU compress routines is
preferable because they are very efficient.

To use a matrix file that has been compressed pre-pend the matrix file name
argument with the compress flag, "-z". For example, to multiply the compressed matrix
A by the uncompressed matrix B and store in C,

mult -zA B C

No routines (except for the inverse numerator relationship builder, ainv) currently
allow for the direct writing of compressed files on output. However, the only routines
that really need it are the concatination routines, shcat and svcat. These routines, and a
few others, have variations in the syntax that indicate the output is to come to standard
output. Users who know how to redirect stdout will realize they can pipe the output
from these commands to compress and accomplish the compression. See examples in
this guide and the sample scripts.

G-11

4 Basic Commands for
Assembling Linear Systems

The abtk can be used for much more than the solution of linear systems of
equations. However, statistical models and their solution make a good vehicle for
learning how to use the abtk. This guide assumes that users are familiar with the algebra
of linear models and will be able to learn the abtk by comparing that understanding with
the syntax of commands.

An Example Model

It is important to keep a structured approach to the construction and solution of
a linear system using abtk. The first thing the researcher should do is write out the linear
model and the normal equations (using matrix notation).

To begin the discussion, a basic linear model will be used as an example. This
model is commonly termed a "fixed effects" model, where the only random effect is the
error term. The model is typically written,

y = X$$$$ + e

where y is a vector of observations, $$$$ is a vector of fixed effects on observations in y,
X is a matrix relating observations in y to effects in $$$$, and e is a vector of random errors
in observations in y. Assume var(e) = IF2.

The normal equations to be solved are,

X'X$$$$ = X'y

This example will be applied to the data set from section 2 of the Users Guide
with one missing value,

A 1 5 500
B 2 3 450
C 1 2 475
D 1 5 .
E 2 4 425
F 2 5 490

The first step is to construct the vectors of the factors in X and the dependent variable
vector y using the UNIX awk command. It is wise to do this in a subdirectory the user
creates to hold the data. If the data file of the above data were named wean.dat, the
sequence of commands might look like,

mkdir data
awk '{print $2}' wean.dat >data/sex

G-12

awk '{print $3}' wean.dat >data/aod
awk '{print $4}' wean.dat >data/yw

All three data vectors are now in the DEFAULT storage mode (see section 3 of
the Users Guide).

The next step is to create the X matrix. Since the X matrix will not be of "full
row rank" the user must decide what set of constraints will be imposed to solve the
linear system. For this example, an equation will be constructed for the mean and an
equation will be constructed for each level of both fixed factors. The normal equations
will be constructed and then equations for the last level of each factor will be eliminated
to obtain a solution. This is the type of constraint that is imposed by PROC GLM in
SAS (1990). Other constraints are possible.

Equation for the Mean

As with most things performed on a computer, building an equation for the mean
can be accomplished in several ways. For most applications the best way will be to use
the mu tool. mu creates a vector of 0's or 1's that have a one to one correspondence with
the elements in the dependent variable vector. mu sends it's output to standard out and
so the output must be piped into a file. To build the incidence matrix for the mean from
our example,

mu data/yw >x_mu

If the matrix file x_mu were listed using the cat command, it would look like,

1
1
1
0
1
1

(Notice x_mu is in DEFAULT storage mode).

Incidence of the Fixed Effects

The abtk contains three tools for building the components of X for fixed factors.
If the factor is a covariate, the tool cov should be used to construct the equation. This
routine will look at the values of the covariate and the dependent variable to construct
a vector of covariate values that are corrected for missing values in the dependent
variable.

To construct components of X for factors that are "class" variables such as in the
example, the easiest tool is fef. A more generalized incidence matrix builder called
gen_z is available. Fef is preferable for this example because it will construct a list of
unique levels of the effect. This list of unique levels of the effect corresponds to the
columns in X that represent the fixed factor. This list must be constructed and supplied
to gen_z.

G-13

To construct the component of X that represents sex in the example,

fef -d data/sex -r data/yw -e sex.list >x_sex

The -d parameter indicates the next argument is the data vector containing the effect
values with a row wise correspondence to the observations in the vector of values of the
dependent variable (data/yw). The -r parameter indicates the next argument is the vector
of the dependent variable. The -e parameter indicates the next argument is the output
file name of the list of levels of the fixed effect. The output matrix of interest is sent to
standard output and therefore, should be piped into a file.

In this example the file sex.list will contain (when cat is used to list its contents),

1
2

indicating two levels of the sex factor were identified in the data and the incedence
matrix x_sex will have two columns, the first one corresponding to individuals which
have a sex level of 1 and the second corresponding to a sex level of 2. Fef will work
with character data in the data vector, e. g. "M" and "F" could have been in the data
vector, data/sex, instead of "1" and "2".

The output matrix file x_sex will look like,
 SPARSE 6 2 5

1 1 1
2 2 1
3 1 1
5 2 1
6 2 1

(NOTE: This matrix can be viewed in DEFAULT storage mode by typing mprint
x_sex.)

Likewise, the incidence matrix for the age of dam factor can be constructed
using,

fef -d data/aod -r data/yw -e aod.list >x_aod

The file aod.list would look like,

5
3
2
4

Notice that it is not in any special sort order. fef constructs the list of levels in the order
it receives them from the data file. If the user wants a special order such as a sort order,
then gen_z can be used instead of fef.

The output matrix file x_aod would look like,

G-14

SPARSE 6 4 5
1 1 1
2 2 1
3 3 1
5 4 1
6 1 1

Concatenating the Blocks

The user has two options for proceeding with the construction of the coefficient
matrix. The incidence matrices can be concatinated and then the transpose of X can be
multiplied by X or each submatrix of the coefficient matrix can be built and then
concatenated. That is, the user could concatinate the incidence matrices for the sex and
age of dam factors together then build the coefficient matrix or the user could build the
sex equations then the age of dam equations and concatinate them together. The first
method will be illustrated since it is probably preferable for this simple example.

Two tools are available for horizontally concatinating, hcat and shcat. For
example, to concatinate the x_mu and x_sex matrices together,

hcat x_mu x_sex x_mu_sex

This will create a third matrix, x_mu_sex, a six by three in SPARSE storage mode that
is the combination of the first two matrices.

The other routine that will perform a horizontal concatination is shcat. Shcat
differs from hcat in that it accepts input matrices stored only in SPARSE mode.
However, it is preferable for concatination when the input matrices are all in SPARSE
mode because it will process several input matrices in one command. It also requires
much less electronic memory since it will not hold entire input matrices in electronic
memory.

In our example x_mu was in DEFAULT storage mode hcat had to be used for the
first concatination. The user can now create the final incidence matrix,

shcat x_mu_sex x_aod X

The last argument to shcat is the output matrix.

Creating the Normal Equations.

The linear system to be solved is,

X'X$$$$ = X'y

The mult tool can be used to create X'X without requiring a separate tool to build the X',

mult -tX X xtx

G-15

The "-t" parameter flag indicates transposition of X before performing the multiplication.
The right hand side of the linear system is also constructed with the mult tool,

mult -tX yw xtyw

Now that the normal equations have been constructed, all that is left to do is to
impose constraints on the equations and solve the linear system. Constraint setting and
solution methods for linear systems are discussed in section eight of the Users Guide.

G-16

5 Assembling Single Trait
Animal Models

Several tools are available for building equation systems with both fixed and
random factors with differing covariance structures between the levels of the random
factors. This section demonstrates the basic methods and tools for assembling a
particular type of random factor linear system that is commonly called the "single trait
animal model". These techniques will be extrapolated to more complex random factor
analyses in the succeeding sections of this guide.

For the discussion in this section additional information must be added to the
example data file used in the previous sections. A field for sire and dam of the animal
who is represented by each item is included,

A . . 1 5 500
B . . 2 3 450
C A B 1 2 475
D . B 1 5 .
E C . 2 4 425
F A E 2 5 490

The linear model now becomes,

y = X$$$$ + Zu + e

where u is a vector of random effects on y and Z relates those effects to observations in
y. The values in u are typically called breeding values and represent the effects due to
additive gene action (breeding values). The variance structure of u is,

var[u] = AF
2

a

where A is the matrix of Wright's numerator relationships and F2
a is the variance of the

additive genetic effects.

The normal equations are,

Constructing the Inverse Numerator
Relationship Matrix

G-17

The construction of Wright's inverse numerator relationship matrix is
accomplished using the ainv tool. The input to ainv is a pedigree file containing three
fields. The records in the pedigree file must be in the same order as the levels of the
random factor. In the example above the pedigree file will contain,

 A . .
 B . .
 C A B
 D . B
 E C .
 F A E

The three fields are the identification code of the individual and the individual's parents
(the order of sire or dam field does not effect the result). The pedigree file must be
ordered so that records for parents occur before records for offspring.

The values for individual identification code, sire identification and dam
identification must be character sortable so that a sire or dam identification will always
occur before an offspring's. This is because the routines that compute the inverse
numerator relationship matrix need to perform several sorts to process the pedigree. For
example, if birth years are available it is a good technique to prepend the identification
code with the birth year.

If birth year data are not available for all animals or if the birth year information
is not reliable, another way to insure sortability is to perform the initial ordering using
the stack_ped tool and then recode the pedigree identification values using the
ped_recode tool. stack_ped will construct a pedigree file ordered ascending by age for
any input pedigree file regardless of its data types and input sort order. ped_recode will
recode the animal, sire and dam identifications in an ascending order pedigree file
beginning with the oldest animal as "1".

No further preparation of the example data is required since the pedigree has the
correct properties for the ainv tool. The pedigree file called ped can be constructed by
issuing,

awk '{print $1, $2, $3}' wean.dat >data/ped

The inverse numerator relationship matrix can be constructed with,

ainv ped

The ainv tool is included in but was not originally constructed for the abtk. The ainv
package can be obtained separately from anomymous@cgel.agsci.colostate.edu. A
companion article about the algorithm used in ainv and other features of the package is
published in the Journal of Animal Sciences (69:3564-3573).

The output from this tool is substantially more verbose than for any other tool.
Two output files are produced; a list of inbreeding coefficients in a file called inbred.lst
and the inverse numerator relationship matrix in SPARSE storage mode. The inverse
numerator relationship matrix will be stored in a file called v in a subdirectory called
a_inverse which is created from the current directory when ainv was executed.

G-18

Assembling the Normal Equations

There are two tools that can be used to assemble the Z matrix for a model with
animal effects. The generalized incidence matrix builder tool, gen_z, can be used but
a special tool has been programmed for animal model incedence matrix construction,
anim_z. The anim_z tool is preferable because it is substantially faster and does not
consume as much electronic memory to process.

To construct the random effect incidence matrix for the example,

anim_z data/yw >z_ww

The resulting matrix, z_ww is in DIAGONAL storage mode. If the user were to cat the
file it would look like,

DIAGONAL 6 6 6
1
1
1
0
1
1

This matrix can then be premultiplied by its transpose,

mult -tz_ww z_ww zwtzw

The multiplication of the variance components ratio by A-1 can be performed at the same
time as the addition to zwtzw using the sadd tool. The sadd tool is a high performance
algorithm for addition of matrices. For the example, say the variance components ratio
is equal to 2.0. The resulting matrix, zw.A, will be in SPARSE storage mode,

sadd zwtzw a_inverse/v*2.0 zw.A

and will have 22 non-zero values.

For the example given here, users will note that z_ww and zwtzw are identical,
except for the different storage modes (Z is idempotent), and thus we could have avoided
the multiply step. As always, there is more than one way to skin a cat or assemble a
linear system. The method presented is intended to illustrate a generalized approach.
Users are encouraged to determine more efficient methods of assembling the particular
linear systems of interest when the savings in CPU cycles is important. However,
novice users may avoid problems by using standard methods and limiting the short cuts
taken.

The off diagonal blocks of the coefficient matrix can be assembled,

mult -tX z_ww xtzw

G-19

The transpose of xtzw can be taken using the trans tool. However, because of the high
speed performance of the mult algorithm, mult is more efficient for problems with
typical sizes,

mult -tz_ww X zwtx

The mult tool will produce matrices that are in SPARSE storage mode and the
resulting matrices can be concatinated using shcat and svcat,

 shcat xtx xtzw x.EQ
 shcat zwtx z.A z.EQ

and

svcat x.EQ z.EQ coef

The right hand side can also be assembled in a similar manner,

mult -tz_ww yw zwtyw
svcat xtyw zwtyw RHS

The completed coefficient matrix is coef and the right hand side vector is RHS. The
solution of this linear system will be discussed in section G-8.

G-20

Maternal Effects Model

Adding maternal effects to the example is a relatively trivial task using the
abtk. The model now becomes,

y = X$$$$ + Zu + Zmum + Zpup + e

where um is a vector of random effects on observations in y due to additive genetic
influences on the dam of the individual who was observed, Zm is an incidence matrix
relating observations in y to the dams additive effect and Zp is an incidence matrix
relating observations in y to nonadditive and permanent environmental effects due to the
dam, up. The variance structure of random effects is now,

The gen_z tool can be used to construct the incidence matrix for maternal effects,

awk '{print $3}' wean.dat >data/dam

gen_z -e data/id -d data/dam -r data/yw -o zm_ww

The -e parameter indicates the name of the vector that contains the animal identification
corresponding to the random effects of animal. The -d indicates the data vector that
corresponds to the dam identification. The -r indicates the name of the observation
vector and has a one-to-one correspondence to the vector indicated by -d. The -o
parameter indicates the name of the output matrix file.

The gen_z tool can also be used to construct Zp. The columns of Zp correspond
to only those females who had offspring, so the -e parameter of gen_z should point to a
data vector containing a list of dams. This data vector can be created with the UNIX
sort utility,

sort -u data/dam | awk '$1!="."{print $1}' >data/pef

The -u parameter indicates suppression of all but one line in each set of identical lines.
The output of the sort is passed to the awk utility so it can sift out the UNKNOWN code.
The gen_z tool then creates Zp,

gen_z -e data/pef -d data/dam -r data/yw -o zp_ww

G-21

Maternal Effects Normal Equations

One set of normal equations for the maternal effects model is,

where,

Assembling equations using a script file. The components can be assembled using
the mult, sadd, shcat and svcat tools. These commands can be placed into a file using
a UNIX editor such as vi and executed as a batch file in background. Figure 1 shows an
example script file for building the normal equations for the model with maternal effects.
If this file were named "mkcoef", it could be run in background by issuing,

sh mkcoef &

the "&" indicates background processing of the script file. The "sh" is the UNIX bourne
shell command processor.

G-22

Figure 1. Batch file to assemble normal equations for maternal effects model.

Build a single trait MME with maternal effect

Fixed effect equations...
mult -tX X xtx
mult -tX z_ww xtzw
mult -tX zm_ww xtzm
mult -tX zp_ww xtzp

Random direct effect equations...
mult -tz_ww X zwtx
mult -tz_ww z_ww zwtzw
sadd zwtzw a_inverse/v*2.0 zw.A
mult -tz_ww zm_ww zwtzm
sadd zwtzm a_inverse/v*4.0 zwzm.A
mult -tz_ww zp_ww zwtzp

Random maternal effect equations...
mult -tzm_ww X zmtx
mult -tzm_ww zm_ww zmtzm
mult -tzm_ww zp_ww zmtzp
sadd zmtzm a_inverse/v*3.0 zm.A

Random permanent environment equations...
mult -tzp_ww X zptx
mult -tzp_ww z_ww zptzw
mult -tzp_ww zm_ww zptzm
mult -tzp_ww zp_ww zptzp
ident -mX >Ip
sadd zptzp Ip*5.0 zp.I

Concatinate it all together...
scat xtx xtzw xtzm xtzp -n zwtx zw.A zwzm.A zwtzp -n \
 zmtx zwzm.A zm.A zmtzp -n zptx zptzw zptzm zptzp - | compress >coef.Z

G-23

6 Assembling Reduced
Animal Models

The normal equations for assembling a reduced animal model can be expressed
in two ways. Many researchers represent the incidence matrix for non-parent random
effects using a separate incidence matrix, usually P. So now Z becomes the incidence
matrix relating the random additive effects of only parent animals to their observations.
However, it is easier to conceptualize the model and construct it with the abtk if the Z
matrix represents both parent and nonparent observations and P is not considered. This
is the method used by Quaas and Pollak (1980, Journ. Anim. Sci 51:1277) to express the
linear system for RAM. It has the additional advantage of using the same notational
method of expressing the normal equations as does the model with animal effects. For
example, after manipulating the algebra the animal model normal equations can be
expressed as,

Z, A-1, u and R-1 are redefined for the reduced animal model.

The Z matrix for random additive effects in the example would be,

The columns of Z correspond to the four animals who became parents, A, B, C
and E. This incidence matrix can be constructed using the ram_z tool,

ram_z -i data/id -s data/sires -d data/dams -e parents -r data/yw -o zr_ww

where data/id is the vector of animal identifications from the data, data/sires is the vector
of sires from the data and data/dams is the vector of dam identifications from the data.
These three vectors can be constructed using awk. They have a one-to-one
correspondence to the observation vector data/yw. The parents vector is a listing of the
parent identifications that correspond to the columns of the incidence matrix. It is an

G-24

input vector that can be constructed by passing a list of all parents to the sort utility and
sorting it with a -u parameter (sifting out the UNKNOWN code, see section 5 of the
Users Guide). This vector should have a one to one correspondence with the A-1 matrix.

The R-1 has a different structure then the R-1 used for a full animal model set of
normal equations. The residual variance of non-parents includes the sampling variance.
A special tool, form_rr, will construct R-1 for a reduced animal model. Form_rr can
construct an inverse residual matrix for a single trait model or it will construct the three
blocks of the inverse required for a two trait model (see section G7). For the single trait
example discussed in this section R-1 can be formed by,

form_rr -r 50.0 -g 25.0 -i data/id -p parents -1 data/yw Ri

where the argument to the -r parameter is the residual variance (50.0), the argument to
the -g parameter is the additive genetic variance (25.0). The -i indicates the name of the
animal identification vector from the data, -p indicates the name of the vector that
contains the parent identifications that corresponds to the columns of the incidence
matrix, -1 indicates the name of the observation vector. The last argument is the name
of the file where the inverse residual matrix will be stored.

It is important to point out that form_rr assumes a relationship coefficient of .5
between offspring and parent when constructing the inverse residual variance matrix.
This may influence an individual researchers decision to construct a full animal model
instead a reduced animal model.

The A-1 becomes the relationship matrix for only animals who became parents.
Therefore, a pedigree file must be constructed for the parents vector. This can be easily
accomplished using the UNIX join utility. For example, the script in figure 2 will
construct a pedigree file for parents (par_ped) only from the pedigree file called ped.

Form parents only pedigree file.

awk '{printf "%s\n%s\n", $2, $3}' ped | sort -u | awk '$1!= "."{print $1}' >tmp1
sort ped | join -a1 -e "." -o 1.1 2.2 2.3 tmp1 - >tmp2
stack_ped tmp2 >par_ped
rm tmp1 tmp2

Figure 2. Script to form a pedigree file for parents only from a complete pedigree file.

Forming the Normal Equations

Assembling the normal equations proceeds as discussed in section G5 with one
exception. The assembly of the blocks of the normal equations to include R-1 can occur
in one command instead of requiring two separate mult commands. For example, to
assemble,

Z'R-1X

a single mult can be issued,

G-25

mult -tzr_ww*Ri X zrtx

The mult tool uses a high performance algorithm that takes advantage of the
DIAGONAL storage mode of Ri and the SPARSE storage modes of zr_ww and X. The
remainder of the assembly proceeds as discussed before.

G-26

7 Assembling Multiple Trait
Models

The discussion in this section deals with models that simultaneously consider two
or more dependent variables. For example, a multi-variate model with two dependent
variables, each with one random factor for the additive genetic effect would be
represented as,

where,

Multiple Trait Normal Equations

The normal equations for this model are,

G-27

Inverse Residual Matrix Blocks

The only tool required to assemble a multiple trait full animal model that has not
already been discussed is form_r. The form_r tool works like the form_rr tool for the
reduced animal model only it assembles the block matrices for a two trait inverse
residual variance matrix for a full animal model. Users will realize that form_r, as with
several of the tools is generalizable. It can be used to construct residual variance
matrices for models that have other random factors besides animal. Such models include
herd effects, sire effects or sire and dam effects.
22

RAM Multiple Trait Models

As discussed in section six of the Users Guide, reduced animal models can be
represented using the same matrix algebra symbols as full animal models. The only
things that need to change are the definitions of the random factor incidence matrices,
the inverse residual variance matrix and the inverse numerator relationship matrix.

When assembling the multiple trait RAM the random factor incidence matrices
would each be assembled the same way as for a single trait RAM. The only matrix that
changes substantially is the inverse residual matrix. The reader is encouraged to see
Quaas and Pollak (1980 JAS 51:1277) for a complete treatment of the subject. The
form_rr tool was used to assemble R-1 for the single trait RAM in section six of the
Users Guide. The form_rr tool can also be used to construct the three blocks of the
multiple-trait RAM,

The user should refer to the reference manual page to see this syntax. The user is also
encourage to see the example scripts that come with the abtk and are given in the
appendix of this guide.

G-28

G-29

8 Solving The Linear System
The current release of the abtk comes with a direct solver and an iterative solver

routine. Both methods of solution are best suited for linear systems. It is possible to
construct non-linear systems or optimization systems using the abtk. Users are highly
encouraged to develop source codes to work with these types of systems and distribute
these codes to their colleagues through the anonymous FTP at cgel.agsci.colostate.edu.

Direct Solution Using an Inverse

Inverting the coefficient matrix of a linear system can be a very computationally
intensive procedure, even for relatively small systems of equations. The invert tool, like
all other abtk tools, uses dynamic memory allocation. Therefore problem size is limited
by available memory. However, practically the problem size is also limited by
processing time and precision of arithmetic used by the C language compiler that built
the toolkit. Unfortunately, the inverse is required for the prediction error variance of the
solutions. Current approximation methods for prediction error variance are not adequate
for many mixed models, particularly when variance components are being estimated
using procedures such as REML.

Not many realistic mixed model linear systems can be solved directly using even
the largest compute architectures currently available. However, the rapid pace of change
in computing technology will continue to allow the user to increase problem sizes suited
for direct solution. Users are encouraged to inspect the "CHANGES" file at the
anonymous FTP at cgel.agsci.colostate.edu regularly to be informed about updates to the
abtk.

The invert tool can take a direct inverse or a generalized inverse of a matrix.

Iterative Solution

An iterative solution can be obtained to the linear system using the itgen tool.
itgen uses a Gauss-Siedel iteration strategy. Users are encouraged to see the reference
manual page to see the optional variations on the iterative method that may speed
convergence for their linear system.

Imposing constraints for an iterative solution. Van Vleck (personal
communication, 1990) indicates that it is not necessary to impose constraints on linear
systems that have dependencies when computing an iterative solution. The values
obtained for fixed effects may look well outside the parameter space, but the differences
between the values still have the same expectations. However, it is advantageous to
impose constraints on fixed effects because it reduces the total number of non-zero
elements processed. Additionally, if the equations eliminated are chosen carefully the
diagonal dominance of the linear system can be substantially increased, and thus, the
total number of rounds required to obtain a converged solution can be decreased.

A very practical constraint to impose is the elimination of the equation for the
mean. This equation is the most dense and usually slows the rate of convergence.
Another reason to eliminate the equation for the mean is that the easiest way to eliminate

G-30

it would be to never build it. This way the user can avoid processing all non-zero values
through the entire assembly phase.

However, the example given here from the linear system constructed in sections
four and five of the Users Guide does not eliminate the equation for the mean. Instead
the constraints imposed are to eliminate the equations for the last level (class) of the two
fixed effects, sex and age of dam. This is the type of constraint typically imposed by
PROC GLM of the SAS procedures (1990). The solutions for the other levels of each
effect are then the deviations from the last level. The last levels of the sex and age of
dam factors are in equations three and seven, respectively. The genrliz tool will impose
the constraints

genrlz -c coef -n coef_g -r RHS -R RHS_g 3 7

Solving the linear system. To compute five hundred rounds of Gauss-Siedel
iteration for the example problem assembled in section five of the Users Guide and
constrained above, the invocation of itgen would be,

itgen -m 500 -r RHS_g -b beta -n coef_g

The -m parameter indicates the number of rounds to iterate, the -r parameter indicates
the name of the right hand side vector, -n indicates the name of the coefficient matrix
and -b indicates the name of the solution vector, in this example "beta". Additionally,
there is an optional restart parameter, -R, who's argument indicates the name of a vector
to use as starting values.

The current implementation of itgen does not have a stopping criteria other than
the -m parameter. It was determined that convergence criteria were too costly to
compute and yielded too little information about the behavior of the linear system.
Users can compute convergence values such as the residual variance or genetic trend,
in between sets of iteration and restart itgen as needed. There is a weak convergence
criteria printed to standard error that is useful in indicating if the solutions are diverging.
This criteria is the average change in all solutions.

The order of the values in the solution vector file will be the same order that the
linear system was assembled. For the example, the first value in beta will be the
solution to the equation for the mean. The second value will be the solution
corresponding to sex code 1. Its expectation will be the effect of sex 1 minus the effect
of sex 2. The third value will be a zero because equation three was eliminated. Values
in the fourth through the sixth rows will be solutions for age of dam categories 5, 3 and
2 respectively. This is the order that the fef tool constructed the incidence matrix and
corresponds to the order of values in the a.list file (see section four of the Users Guide).
The expectations of these solutions are the deviation of the effects from the last effect.
The value in row seven is zero since its equation was eliminated to break the
dependencies. The remaining values are "breeding values" of the animals in the order
they appear in the pedigree file.

